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INTRODUCTION

If A is a closed subset of the normed linear space X, then A is said to be
"proximinal" in X if, for each x E X, there is Yo E A such that

II x - Yo II = d(x, A) = inf{ II x - Y II ;YEA}.

In this case Yo is called a "best approximation" for x from A. If B is a sub­
set of X, then

15(B, A) = sup {d(x, A);XEB},

is the deviation of B from A, and

dn(B, X) = inf {15(B, N); N is an n-dimensional subspace of X}

is the Kolmogrov n-width of B in X.
If X and Yare normed linear spaces, then L(X, Y) denotes the set of all

bounded linear operators from X to Y, K(X, Y) the set of all compact
operators in L(X, Y) and Kn(X, Y) the set of all operators in L(X, Y) of
rank ~n.

The first serous study of the proximinality of Kn(X, Y) in K(X, Y) and
L(X, Y) appeared in the paper of Deutsch, Mach, and Saatkamp [2]. This
paper was followed by two others, Kamal [4J and Kamal [5J, in which
several results concerning the proximinality of of Kn(X, Y) in K(X, Y) and
L(X, Y) were proved. In their paper [2J, Deutsch et al. proved that for
each integer n~O, the set Kn(co, co) is proximinal in L(co, co), while in the
present paper the following result is proved: Let Q and S be locally com-
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pact Hausdorff spaces, and assume that 8 contains an infinite convergent
sequence of distinct elements. Then, for each n~ 1, Kn(Co(Q), Co(8)) is
proximinal in K(Co(Q), Co(8)) if and only if Q is finite,

Deutsch et at. asked whether or not it is true that the set Kn(c, co) is
proximinal in L(c, co). In this paper the author continues the study of the
proximinality of the set Kn(K, Y) in K(X, Y) and L(X, Y).

In Section 1, it is shown that for each positive integer n ~ 1, the set
Kn(c, co) is not proximinal in L(c, co), this gives a negative solution to part
(a) of Problem 5.2.2 of Deutsch et al. [2]. In Section 2, it is shown that if
E = c or Co then for each positive integer n~ 1, the set Kn(E, c) is not
proximinal in K(E, c). Since by Mach [6J, the set K(co, c) is proximinal in
L(co, c), it follows that there are Banach spaces X and Y, such that the set
Kn(X, Y) is not proximinal in K(X, Y), whereas the set K(X, Y) is
proximinal in L(X, Y). The results of Sections 1 and 2 will be used in Sec­
tion 3 to obtain the main result of this paper which can be stated as
follows: if Q and 5 are two locally compact Hausdorff spaces, such that 5
contains an infinite convergent sequence of distinct elements, then for each
positive integer n~ 1, the set Kn(Co(Q), Co(8)) is proximinal in K(Co(Q),
Co(5)) if and only if Q is finite. This result is not generally true if 5 fails to
contain an infinite convergent sequence of distinct elements, Deutsch et at.
[2J proved that for any normed linear space X, the set Kn(X, co) is
proximinal in K(X, co). The set that contains an infinite convergent
sequence of distinct elements was introduced in Kamal [5] and it was
called a set that "Contains Qo." It is shown also in Section 3 that if the
locally compact Hausdorff space Q contains Qo, then for each positive
integer n~ 1, the set Kn(Co(Q), co) is not proximinal in L(Co(Q), co). This
might help in finding a general solution to part (b) of Problem 5.2.2 of
Deutsch et al. [2]. The rest of the Introduction will be used to cover the
basic definitions and notations that will be used later in this paper.

If Q is a Hausdorff topological space, X is a normed linear space and T is
a topology defined on X, then C(Q, (X, T)) denotes the set of all bounded
function from Q to X, which are continuous with respect to r. If r = II'
then Co(Q,X)={fEc(Q, (X, 11'11));\18>0 the set {qEQ; i!f(q)il ~8} is
compact}. If X = R, the set of real numbers, then Co(Q, R) is denoted by
Co(Q). If Q is the set of all positive integers, then Co(Q, X) consists of an
bounded sequences in X that converges to zero, and will be denoted by
co(X). If Q is the one point compactification of thc set of positive integers,
then Co(Q, X) consists of all bounded convergent sequences in X, and will
be denotcd by c(X). If X* is the dual of X, then

Co(Q,(X*, 0)*)) = {IE c(Q, (X*, 0)*)); Xc fE Co(Q) \Ix EX},

where X is the image of x under the canonical injcction of X in X**.
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The proof of the following lemma can be found in Kamal [4].

0.1. LEMMA. Let X be a Banach space, Q a locally compact Hausdorff
space, and for each nonnegative integer n, let

Cn= {fE Co(Q, X*);f(Q) r;; Nfor some n-dimensional subspace N of X*}.

Then Kn(X, Co(Q)) is proximinal in L(X, Co(Q)) Crespo K(X, Co(Q))] if and
only if Cn is proximinal in Co(Q, (X*, w*)) [resp. Co(Q, X*)J

0.2. DEFINITION. Let X be a Banach space, Q a locally compact
Hausdorff space, and Cn be as in Lemma 0.1.

(a) For eachfE Co(Q, (X*, w*)), let an(f) denotes d(j, Cn)'

(b) For each TE L(X, Co(Q)), let an(T) denotes d(T, Kn(X, Co(Q))).

It is obvious from Lemma 0.1 that there is no problem in introducing the
same symbol "an" in both cases of Definition 0.2, since an(f) is attained for
each fE Co(Q, (X*, w*)) Crespo Co(Q, X*)] if and only if an(T) is attained
for each TEL(X, Co(Q)) Crespo K(X, Co(Q))].

1. % ,,(c, co) Is NOT PROXIMINAL IN L(c, co)

In this section it will be shown that for each positive integer n~ 1, the set
Kn(e, co) is not proximinal in L(c, co), By Lemma 0.1 it is enough to show
that for each positive integer n~ 1, there is a bounded sequence {Xi}f'= 1 in
c*, that converges to zero with respect to the w*-topology on c*, and
ant{Xi} f'= 1) is not attained, that is there is no bounded sequence {ri} f'= 1 in
any n-dimensional subspace of c* such that Ti -+ 0 and II {Xi}~ 1 ­

{ r i} f'= 1 II =ant {Xi} ~ 1)'

The first step in the proof is to find an n-dimensional subspace No of 11,
and finite subset D of /1' such that No is the unique extremal subspace for
diD, Id, that is, dn(D, ll) = (j(D, No), and for any n-dimensional subspace
N:f:. No in /1' bCD, N) > dn(D, /1)' This will be done in Lemma 1.5. The
second step is to find a bounded sequence {Yi}~1 in /1 that satisfies certain
conditions, and such that d{yJ~l' Co(No)) is not attained. This will be
done in Lemma 1.6. In Lemma 1.7, the set D and the sequence {Yi} f: 1 will
be used together to obtain the required result.

1.1. DEFINITION. The c-topology on II is the topology for which a boun­
ded sequence {xk

} k= 1 in 11 converges to zero, iff for each y = (y l' Y2 , ... ,) E c
limk~CX! [x7 limYi+ 2:;':2 X; Yi_l]=O, where xk=(x7,x~,...,).
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1.2. PROPOSITIOK For each x = (x 1> X2 , ...,) E 11 , define the linear

functional XEC* by X(y)=xllimYi+L~2XiYi-l' Y=(Yl,Y2, .. ·,)EC.
Under this identification 11 is isometric to c*, and the c-topology on lj
corresponds to the w*-topology on c*.

1.3. PROPOSITIO"!'; (Brown [1]). Let B be an (n + 1)-dimensional normed
linear space and let L be an n-dimensional subspace of B. There is a subset A
of B consisting of (n + 1) points, such that dn(A, B) > 0 and L is the unique
extremal n-dimensional subspace of B for dn(A, B).

1.4.

Let {e; }7:/ be the standard basis in l~ , l' that is e; = (0, 0'00" 0, 1,0'00.,0),
and let N~ be the subspace generated by {e;} 7= l' By Proposition 1.3, there
is a subset A of l~~ 1 consisting of a finite number of elements, such that
dn(A, l~ + 1) = 2, and N~ is the unique extremal n-dimensional subspace for
dn(A,I~+d. Let xi=4e;+2e~-lj=(0,00.,0,4,0,...,0,2)El~ l' i=1,2, ...,n.
Then d(x i , N~)=2, and for each i~ 1, the element y;=4e; is the unique
element in N~ such that Ii Xi - y;;1 = d(x i , N~). Let A' = A U {Xl '00" x n }, then

(1) A' consists of a finite number of elements,

(2) dn(A ', l~j d = b(A', N~) = 2,

(3) N~ is the unique extremal subspace for dn(A ', l~-r 1)' and

(4) for each i = 1, 2'00" n the clement y; = 4e; is the unique element in
N~ such that rXi - Y; \1 :( 2.

1.5. LEMMA. Let {e;}r:j be the standard basis in lj, that is
e i = (0, 0'00" 0, 1, 0, ...,). Let 10 = L~ n +- 2 a;ei be an element in 11' let io be a
positive integer such that, 1:( io:( n and let No be the n-dimensional subspace
of II generated by

There is a subset D of I), consisting of a finite number of elements, such that

(1) dn(D, Id=b(D, No)=2,

(2) No is the unique extremal sub::.pace of II for dn(l), ld·

Proof Let A', N~, {x i }7 I and {e;}7~jl be as in 1.4. For x'=L7~1 rLie;
in A 'one can choose y' = 2:7~ 1 )oie; E N~, such that Ii x' - y' II :( 2. Define
t/J(x')=L7~l (X;e;+A;o/oEl 1 • Then

!It/J(XI)-(tj )oiei+)oio(e;o+/o):: :(2.

Let D = {t/J(x' ); x' E A}, then D consists of a finite number of elements and

640/47/7 5
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8(D, No) = 2. To complete the proof it will be shown that if N is an n­
dimensional subspace of 11 and 8(D, N)~2 then N=No. Let P: 11 -d~+1
be defined by

P((X;)~ J = (x;)7~}·

Clearly P(D) = A', and since 8(D, N) ~ 2 then 8(A ', P(N)) ~ 2. Thus by 1.4
P(N) = N;, therefore N has a basis of the form

00

di=ei + L f3~ek'
k~n+2

i= 1, 2'00" n.

Also by 1.4 for each i = 1, 2'00" n, Xi =4e; +2e~+ 1E I~+ 1 is contained in A'
and 4e; is the unique element in N; that approximates Xi' so

and

ljJ(x;)=4ei+2en +1 for i #- io

ljJ(XiO ) = 4eio +4yo +2en +l'

Using the fact that p(N) = N;, if Zi E N approximates ljJ(x;), then

and

z;=4ei for i #- io

Therefore No s:; N, and since dim No = dim N = n, it follows that No = N. I

1.6. LEMMA. Let {e;}~ 1 be the standard basis in 11' Let

00

Yo= L 2i~L1 = (0,0'00.,0, !, i, i,oo.,)E!l
i~ n + 2 (n + l)times

and let No be the n-dimensional subspace of 11 generated by

There is a bounded sequence {y i}~ 1 in 11 with the following properties:

(1) { Yi}~ 1 converges to zero with respect to the c-topology on /1 ,

(2) d({Yi}~to co(No))=2, and

(3) d({y;}~to co(No)) is not attained.

Proof Let Cio = -e1 +L~2 ej2i- 1 = (-1, !, t ...,) E Ito and let M be
the one-dimensional subspace generated by Cio.
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For each k ~ 1 let

tfik = -e l + f i-~~+ I = (-1,0,0,... ,0, !, !,...,).
i=k 2. (k--2)times

161

It will be shown that for k ~ 3 the point Cr:o is the unique best
approximation to tfi k from M. Assume that d( tfi b M) = 'I 1·Cr:o tfi II, then

The only local minimum points for this equation occur when I. = 1, I, = 0
and ).=2k - 2. If I. = 1 then j,).ao-tfikll = 1-2 -k f2 + 1-2 kt2 =
2_2-k-f 3, if ;~=o then IIJ.Cr:o-tfikll = Iitfikil =2, and if 1,=2k

2 then
li),Cr:o-tfikll=2k-2-1+2k-2-1=2k-I-2. So for k~3, miniER
:1 I,ao- tfi k Ii = II Cr:o - tfi k Ii, that is Cr:o is the unique best approximation to ljJk
from M. For each positive integer k ~ 3, let ak = 2/:1 Cr:o- tfi k Ii. Since
il 0:0 - tfi Ii < 2 and Ii Cr:o- tfi I! ~ 2, it follows that ak> 1 and ak -l- 1. Let
¢Jk = aktfi k' Then since !I tfi k II = 2, it follows that i! ¢Jk Ii > 2, d(¢Jb M) = 2 and
akCr:O is the unique best approximation to ¢Jk from M when k ~ 3. Further­
more

(a) Since {tfik}k~3 converges to zero with respect to the c-topology
on ll, it follows that {iPdkd converges to zero with respect to the same
topology.

(b) It will be shown that d({¢Jk}k=3' co(M)) is not attained.

Let e > 0 be given, and let k o be so that for all k ~ k o

if k ~ko

if k > k o

Then {Tk};:)d E co(M) and Ii {¢Jd;:' 3 - {Tk }k=3 Ii ~ 2 + G. Thus d( {iPdL3'
co(M))~2. But the only sequence {Tdk=3 in M for which lI{iPdk=3­
{Tdk=311=2 is {Tdk=3={akCr:O};:).3' and since ak~l, it follows that
Tk f+ O. So d({¢Jdk=3' co(M)) is not attained. Define P: ll-l-ll by

ao

P(x i ) = Xl el + L xienti = (Xl' 0, 0, ..., 0, X2, x 3 , ..·,).
i=2 n-times
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Then P is an isometry from 11 into 11 and P(ao) = -e1+Yo' Let Y1,Y2 be
any two elements in No, and for k ~ 3, let Yk = P(rPk)' Then the sequence
{Yk } k~ 1 converges to zero with respect to the c-topology on 11' Further­
more if k ~ 3 and x = c1( -e1+Yo) + 2:7=2 ciei in No, then

n

II Yk-xll = L: Icil + II Yk- C1( -e1+Yo)JI
i~2

~ II Yk- C1( -e1 +Yo)JI

= IIP(rPk)-c 1P(ao)JI

= II ¢k - ciao II·

Therefore for k ~ 3, the element ak ( - e1 +Yo) is the unique best
approximation to Yk from No. Thus as in (b) one can show that
d( {Yk} k~ l' co(No)) =2, and it is not attained. I

1.7. LEMMA. For each positive integer n ~ 1, there is a bounded sequence
{xd k= 1 in 11' such that {xd k= 1 converges to zero with respect to the c­
topology on 11 and an({ xdk~ 1 is not attained.

Proof Let No and Yo be as in Lemma 1.6. By Lemma 1.5 "taking io= 1
and replace Yo by -Yo" there is a subset D of 11 consisting of finite number
of elements, such that dn(D, Id = b(D, No) = 2, and No is the unique
extremal n-dimensional subspace for dn(D, 11)' Without loss of generality let
D = {z 1 , ... , Zm}, and let {yd k= 1 be as in Lemma 1.6. Define the sequence
{xdf= 1 in 11 as follows:

for k= 1,1,..., m

for k = m + 1, m + 2,....

Then {xk } k= 1 converges to zero with respect to the c-topology on 11' and
an({xdk=l)~d({Xk}k~l' co(No)) =2. Assume that there is an n-dimen­
sional subspace N of III and a sequence {,k } k~ 1 in N such that
II {Xk }k=l - {,dk~lll ~2, then b(D, N)~2 so by lemma 1.5, N=No, and
thus by Lemma 1.6 'k fr O. So an({xdk= 1 is not attained. I

1.8. THEOREM. For each positive integer n ~ 1 the set Kn(c, co) is not
proximinal in L(c, co).

Proof Follows from Lemma 0.1, Proposition 1.2, and Lemma 1.7. I
Theorem 1.8 gives a negative solution to Problem 5.2.2 in Deutsch, Mach

and Saatkamp [2] when X = c.
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2. Kn(E, c) Is NOT PROXIMINAL IK K(E, c) FOR E= Co AND C
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In this section it will be shown that for E = Co and c and for each positive
integer n ~ 1, the set Kn(E, c) is not proximinal in K(E, c). The argument of
the proof is similar to that one in Section 1 and the main step is
Lemma 2.1.

2.1. LEMMA. Let {ei};X'~l be the standard basis in /1' let

00 1 CD 1
iXo = e1 + e3 + L 2k eZk + Z + L 2k eZk oJ

k~ 1 k~ 1

= (1, 0,1,!,!,~, t ...,) E 11

and let M be the one-dimensional subspace of II generated by iXo. There is a
bounded sequence {[3 i}~ I in l[ satisfying the following properties:

(1) {f1i}~l converges with respect to the norm-topology on 1[,

(2) d({[3i}7:" l' c(M))=2, and

(3) d({fJi}r::.,l' c(M)) is not attained.

Proof
Let

co 00

fJo=(l/2ed-(1/2e3)+ L (l/2k-rI)eZk+Z- L (1/2k
-t l)eZkl 3

k, I k [

= (i, 0, -!,!, -~, i, -k,···,) EII

and let {lj;d7:.d be the sequence in 11' defined as follows:

Clearly lj; i --> #0· It will be shown that for each i ~ 1 the clement !iXois the
unique best approximation for lj;Zi . .1 from M, and - !iXo is the unique best
approximation for lj; Zi from M. Let i ~ 1 be a fixed positive integer. For any
real number )~
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= lA-~1+l)·+~l+IA-~l' C~l ;k)+IA +~I

.C~l ;k)+ IA-~:/2)1
k#i

= IA-~1(2+~) +IA+~I (2-~)-

It fol1ows from this that II AiXo-l/tZi-lll is minimum only when A=!. In the
same way one can show that

II Aao-l/t 2i II = 12 - ~I(2- ~) + IA+~I(2+~),

which is minimum only when A= -!. Thus for each positive integer i ~ 1,

d( l/tZi - 1, M) = Ill/t 2i - 1 - ~ ao II =2 - b< 2,

d(l/tZi' M) = 11l/t2i +~ao II = 2 -b < 2,

and

For each positive integer k~ 1, let Ak = 2jd(l/Jb M), then Ak> 1 and Ak -41.
Let flk = Akl/tk> then

(l) Since l/tk~ flo and Ak -41, it follows that flk -4 130'

(2) It is obvious that II 13k [I -42, and for each positive integer k ~ 1,
1113k II> 2, so let & > 0 be given, and let io~ 1 be such that for i~ io, II fJ i II ~
2+&.

Define the sequence {rk} f'= 1 in M as follows:

{
the unique best approximination for f3 k from M,

'k = o
if k ~ io
if k > io.

Then {rk}f'=lEC(M), and II{fJdk=l-{rdk~l II ~2+B. Thus

d({f3dk= l' c(M)) ~ 2.
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(3) The only sequence {,d k:~ 1 in M satisfies the inequality
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is the following sequence:

'2i I =~)'2i I~O'

'2i= -!)'2i:;(O,

which is not in c(M). I

i= 1, 2, ... ,

i= 1, 2, ...,

for i= 1, 2,..., m

for i = m + 1, m + 2, ....

2.2. LEMMA. For each positive integer n ~ 1, there is a convergent
sequence {Xi}~1 in II such that an({xi};:d) is not attained.

Proof Let {e i};: l' :;(0 and {fi i}t2d be as in Lemma 2.1, let

ac: 1 00 1
J!0=en+2+ L 2ken+2kl-l+ L 2ken+2kl-2

k I k= I

= (0, ..., 0, 1,!, L i, 1,···,) E 11'
(n I-I)times

and let No be the n-dimensional subspace of 11 generated by
{e l ,e2,...,en l,en+yO}' Define T:/l-dl by

00

T((x;)~I)= L x ien1i -1=( 0, ...,0, XI,X2,"")'
i~ I (n -·1 )times

T is an isometry from II into II' and T(:;(o)=en+}'o. Let
Y j = T(fi;) i = 1, 2,.... Then {Yi};x;" 1 is a convergent sequence in II, and
d({Yi};~I' c(No))=2. The only sequence {lj;i}~J in No satisfying
il {Yi};x;" J - {lj; i } r~ J II = 2 is the image under the isometry T of the unique
sequence {'i}':.1 in M satisfying II{fii}~1--{'i}'(.I:I=2. But by
Lemma2.1 this sequence does not converge. So d({Yi}~I' c(No)) is not
attained. By Lemma 1.5 "taking io= n," there is a subset D of II consisting
of finite number of clements, such that dn(D, Id = b(D, No) = 2, and No is
the unique extremal n-dimensional subspace for dn(D, II)' Let
D = {z 1>"', Zm} and define the sequence {Xi} '( 1 in II as follows:

X_={Zi
, Yi-m

One can easily show that {Xi}~ 1 is a convergent sequence in 11 and
an({xi};x;" d is not attained. I

2.3. COROLLARY. If E = c or Co then for each positive integer n ~ 1 the set
Kn(E, c) is not proximinal in K(E, c).

Proof Follows from Lemmas 0.1 and 2.2.
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3. THE PROXIMINALITY OF Kn(CO(Q), CO(S)) IN K(Co(Q), CO(S))

In this section the proximinality of Kn(Co(Q), Co(S)) in K(Co(Q), Co(S))
and in L(Co(Q), Co(S)) will be studied in detail. It will be shown that if Q
and S are locally compact Hausdorff spaces, and S contains Qo, then
Kn(Co(Q), Co(S)) is proximinal in K(Co(Q), Co(S)) iff Q is finite. It will be
shown also that if Q is a locally compact Hausdorff space, that contains Qo
then Kn(Co(Q), co) is not proximinal in L(Co(Q), co). The first step in the
proof is to show that if X is a Banach space, and Q is a locally compact
Hausdorff space that contains Qo, then the proximinality of Kn(X, c) in
K(X, c) Crespo L(X, c)] is a necessary condition for the proximinality of
Kn(X, Co(Q)) in K(X, Co(Q)) Crespo L(X, Co(Q))]. This will be established
in Lemma 3.4. The second step is to show that if Q is a locally compact
Hausdorff space, Y is a closed subset of Q and X is a Banach space then
the proximinality of Kn(Co(Y), X) in K(Co(Y), X) Crespo L(Co(Y), X)], is a
necessary condition for the proximinality of K n ( Co(Q), X) in K( Co(Q), X)
Crespo L(Co(Q), X)]. This will be established in Lemma 3.5. Finally the
results of Sections 1 and 2 will be used in Theorems 3.6 and 3.8., to obtain
the main results.

The closed subspace Y of the Banach space X is called a norm-one-com­
plemented subspace of X if there is a linear projection P: X -+ Y such that
II P II = 1. The proof of the following proposition depends on this property:

3.1. PROPOSITION. Let Q be a locally compact Hausdorff space, E a
Banach space and F a norm-one-complemented subspace of E. If anU) is
attained in E for each fE Co(Q, E), then an(g) is attained in F for each
gE Co(Q, F).

The proof of the following lemma is straight forward:

3.2. LEMMA. Let Q be a locally compact Hausdorff space and let
X = Co(Q). If Q is infinite then there is a subspace Y of X* satisfying the
following properties:

(1) Y is isometrically isomorphic to 11'

(2) Y is a norm-one-complemented subspace of X*.

Lemma 3.3 is similar to the Extension of Tietze's Theorem due to Dugundji
[3].

3.3. LEMMA. Let X be a Banach space, Q a locally compact Hausdorff
space that contains Qo and let {b i }~ 1 be an infinite sequence of distinct
elements in Q, that converges to bo in Q. There is a sequence {q) i } ~ 0 of real­
valued functions on Q with the following properties:
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(a) For i = 1, 2, 3,..., the function rP; is continuous.

(b) °~ rP;(q) ~ 1,for all q E Q and i = 0, 1, 2, .

(c) r/Ji(bJ =6ijfor i= 1, 2, 3, , andj= 1, 2, 3, .

(d) rPo(b;)=Ofori=1,2,3, .

(e) Lf'::o rPi(q) ~ 1 for all q E Q.

(f) There is a compact subset Y of Q, such that L~ 0 r/Ji =. 0 outside Y.

(g) If {X;}~l is a bounded sequence in X that converges to xo, then
the function f:Q-+X defined by f(q)=L~orPi(q)xi' is an element in
Co(Q, X).

(h) If X is a dual space and {x;} f~ 1 is a bounded sequence in X, that
is, w*-convergent to Xo then the function f: Q -+ X defined by f(q) = L~o
rP;(q) Xi' is an element in Co(Q, (X, m*)).

Proof Since b i -+ bo one can show that there is a relatively compact
open subset U of Q, such that {b i };~ 0 ~ U. Let Y = a, and let g: Q -+ R be
a continuous function with the following properties:

(1) g(q) =°for q $ U, and Ii g r= 1,

(2) g(b i)= I for i= 1, 2, ..., and g(q)):O for all qEQ.

Let {VI' U 1 } be an open cover for Q that satisfies the properties that VI n
{b;};-:o= {bd, and b l $ U I · Let {rP;, g'd be a partition of unity
corresponding to {VI' Ud. Then rP; (bd = 1, rP1 (b i) =°for i # 1, g'l (bd = 0,
and g; (b;) = 1 for i # 1. Let rP 1 = rP; . g and let g 1 = g; . g, then rP I +g 1 = g.
By the same method, for each n): 1, "by taking gn--1 in place of g," one can
show that there are two nonnegative continuous functions r/Jn and g" with
the properties that rPn(bn) = 1, rPn(b;) =0 for i=f.n and r/Jn+gn=gn [, that
is, L7~ I rP; +gn =g. Since {r/Ji }7.-1 and gn are nonnegative, it follows that
for each qEQ, L7~1 rPi(q)~g(q).Thus by induction there are two bounded
sequences {rP;} f~ 1 and {g} r~ 1 of nonnegative continuous functions on Q,
satisfying that rP;(bj ) = 6ij' 0 ~ rP i(q) ~ 1 for each q E Q, rP i=. 0 outside Y, and
L7~11Ji+gn=g. Clearly L~lrP;(q)~g(q) for each qEQ, so let
rPo = g - L'(: 1 rPi' Then °~ rPo(q) ~ 1 for each q E Q, rPo =. 0 outside Y, and
rPo(b;} =0 for i= 1, 2, .... Thus the conditions (a) (f) are satisfied.

(g) Assume that Xi -+ Xo in X, and let f: Q -+ X be defined by

Then

00

f(q)=rPo(q)xo+ I rPi(q)Xi
i~l

for qE Q.
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00

=g(q)XO+ L r/J;(q). [Xi-XO].
i=1

Since for each i?3 1 the function r/Ji is continuous, and since II Xi - Xo II ~ 0,
it follows that the function L~ 1 r/J;(q). [Xi - xo] is continuous. Thus the
function I is continuous, and since 1==0 outside Y then IE Co(Q, X).

The proof of (h) is similar to that of (g). I

3.4. LEMMA. Let X be a Banach space, and let Q be a locally compact
Hausdorff space that contains Qo. If Kn(X, c) is not proximinal in K(X, c)
Crespo L(X, c)], then Kn(X, Co(Q)) is not proximinal in K(X, Co(Q))
Crespo L(X, Co(Q)].

Proof Assume that Kn(X, c) is not proximinal in K(X, c)
Crespo L(X, c)]. Then by Lemma 0.1 there is a convergent Crespo w*-con­
vergent] sequence {Xi}~1 in X* such that

an({Xi}~I) = inf{d( {Xi}~I' c(N)); dim N < n, N~X*}

is not attained.
Since Q contains Qo, it follows that there is an infinite sequence {b i }~ 1

of distinct elements in Q, that converges to some point bo in Q. As in
Lemma 3.3, let {r/Ji}~ 0 be a sequence of nonnegative fuctions defined on Q,
corresponding to {bi}~I' Define/:Q~X*by/(q)=L~or/J;(q)Xi'Then
by Lemma 3.3, IE Co(Q, X*) Crespo IE Co(Q, X*, w*))], and I(bi)= Xi for
each i = 1, 2,.... It will be shown that anU) = an({x i}r: I)' Let g: Q ~ X* be
a continuous function with g(Q) ~ N for some n-dimensional N of X*, and
let Yi = g(b;). Since bi~ bo, then the sequence {y;}~ 1 converges to
Yo = g(bo), and

Therefore an({xi}r:I) <anU)· Second, let {Yi}r:1 be a convergent
sequence in an n-dimensional subspace N of X*, and define g: Q ~ N by
g(q) = :Lr:o r/Ji(q) y;. By Lemma 3.3, g E Co(Q, N), and for each q E Q

IIU-g)(q)11 = t~o q)i(q)(Xi-YJII <i~O q);(q)llxi-y;iI

<sup Ilxi - Yill = II {x;}r:1 - {Yi}r:111.
I

Thus III-gil < II {xi}r: 1- {Yi}r: 111, therefore anU) < an({x;}r: 1)' It is
clear from the first part of the proof, that if anU) is attained then
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ai {x.}~ I) is attained. But an({x.}~d is not attained, so Gn(f) is not
attained. I

3.5. LEMMA. Let Q be a locally compact Hausdorff space, Y a closed
subset of Q and let X be a Banach space. If Kn(Co( Y), X) is not proximinal
in K(Co(Y), X) Crespo L(Co(Y), X)] then Kn(Co(Q), X) is not proximinal in
K(Co(Q), X) Crespo L(Co(Q), X)].

Proof Let P: Co( Q) ---. Co( Y) be defined by

P(f) =flY> IE Co(Q)·

P is a linear and onto mapping with Ii P(f) i! ~ II I il for each f E Co(Q). Let
T be an operator in K( Co(Y), X) Crespo L( Co(Y), X)], then T' = T () P is
an operator in K( Co(Q), X) Crespo L(Co(Q), X)]. It will be shown that
an(T) =an(T'), and if Gn(T) is not attained then an ( T') is not attained. If
K: Co(Y) ---. X is a bounded linear operator of rank less than or equal to n,
then K' = K" P is an operator in KA Co(Q), X). Furthermore

II 1" -K' Ii ~ IIP:I I' T-Kli = II T-K'I·

Thus an ( T') <:;, Gn ( T).
Second, let K' EKn(Co(Q), X), then there are {,udk=1 in (Co(Q»*, and
{Xdk~1 in X, such that for eachfECo(Q)

n

K'(f) = L ,uk(f)' x k·
k=1

For each k = 1, 2, ..., n, let ,u~ = ,ukl y, and let K: Co(Y) ~ X be defined by
n

K(f) = I ,u~(f)' Xb IE Co( Y).
k=1

Clearly K EK n ( Co(Y), X). It will be shown that for each IE Co( Y) with
II Ii ~ 1, there is a net {J~ LEI in the unit hall of Co(Q) such that

II (T - K)(f) II E { I: (T' - K' )(j~) 11 }" e h

If this is true then II T - K II ~ il T' - K' ;1, and therefore an ( T) = an( T'). Let
{U" }a £l be the family of all open sets in Q that contain Y. For each (J, E I,
there is a continuous function g~: Q -+ R with the following properties:

and

g~(q) = {~
for q E Y,

forq¢U",

for all q E Q.
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On the other hand by Tietze's Extension Theorem, there is a function
FE Co(Q), such that II F II :( II f II and F

1
Y = f Let frt = Eo g rt. Then the net

{frt} rt E I is contained in the unit ball of Co(Q). Furthermore for each IX E I,
T'(fJ = T(f), and since Q is a Hausdorff space, it follows that
nrtEI Urt = Y, thus for each k = 1, 2, ..., n, fl~(f) E {flk(fJ }rtEI. Hence

II (T - K)(f) II E { II (T' - K' )(frt) II } rt E I .

It is clear from the proof that if an(T') is attained then an(T) is attained. I

3.6. THEOREM. If Q is a locally compact Hausdorff space, that contains
Qo then for each positive integer n ~ 1, the set K n(Co(Q), co) is not
proximinal in L(Co(Q), co)·

Proof By Theorem 1.8, the set Kn(c, co) is not proximinal in L(c, co).
Since Q contains Qo, it contains an infinite convergent sequence {bJ~ 1 of
distinct elements, but then c = C( {b i }~ 1). So by Lemma 3.5, the set
Kn(Co(Q), co) is not proximinal in L(Co(Q), co). I

Note. Theorem 3.6 is not generally true if Q fails to contain Qo, indeed
by Deutsch et al. [2J, the set KAco, co) is proximinal in L(co, co).

3.7. LEMMA. Let Q be a locally compact Hausdorff space. If Q is infinite
then for each positive integer n): 1, the set Kn(Co(Q), c) is not proximinal in
K(Co(Q), c).

Proof By Corollary 2.3, the set Kn(c, c) is not proximinal in K( c, c).
Thus by Lemma 0.1, there is a convergent sequence {Xi}~ 1 in 11> such that
an({xi}~I) is not attained. By Lemma 3.2, II is isometric to a norm-one­
complemented subspace of (Co(Q))*, thus by Proposition 3.1, there is a
convergent sequence {Yi}~1 in (Co(Q))* such that an({yd~l) is not
attained. Therefore by Lemma 0.1, the set Kn(Co(Q), c) is not proximinal in
K( Co(Q), c). I

3.8. THEOREM. Let Q and S be two locally compact Hausdorff spaces, and
assume that S contains Qo. Then for any positive integer n): 1, the set
Kn(Co(Q), Co(S)) is proximinal in K( Co(Q), Co(S)) iff Q is finite.

Proof Assume that Q is infinite. By Lemma 3.7, the set Kn(Co(Q), c) is
not proximinal in K(Co(Q), c), thus by Lemma 3.4, the set
KACo(Q), Co(S)) is not proximinal in K(Co(Q), Co(S)).

Second, assume that Q is finite. Then there is a positive integer m): 1,
such that Co(Q) = I';;. By Brown [1] the metric projection from (l';;)* = I;"
onto any of its subspaces has a continuous selection. Thus by Deutsch et al.
[2] the set Kn(Co(Q), Co(S)) is proximinal in K(Co(Q), Co(S)). I
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Note. Theorem 3.8 is not generally true if S fails to contain Qo. By
Deutsch et al. [2], the set KIl(X, co) is proximinal in K(X, co) for any nor­
med linear space X, and the set Kn(X, (.y;;) is proximinal in L(X, L,J for any
normed linear space X.
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