On Proximinality and Sets of Operators. III. Approximation by Finite Rank Operators on Spaces of Continuous Functions

AREF KAMAL*

Department of Mathematics, Birzeit University, P.O. Box 14, Birzeit, West Bank, via Israel

Communicated by E. W. Cheney

Received October 10, 1984

INTRODUCTION

If A is a closed subset of the normed linear space X, then A is said to be "proximinal" in X if, for each $x \in X$, there is $y_0 \in A$ such that

$$||x - y_0|| = d(x, A) = \inf\{||x - y||; y \in A\}.$$

In this case y_0 is called a "best approximation" for x from A. If B is a subset of X, then

$$\delta(B, A) = \sup \{ d(x, A); x \in B \},\$$

is the deviation of B from A, and

 $d_n(B, X) = \inf \{ \delta(B, N); N \text{ is an } n \text{-dimensional subspace of } X \}$

is the Kolmogrov n-width of B in X.

If X and Y are normed linear spaces, then L(X, Y) denotes the set of all bounded linear operators from X to Y, K(X, Y) the set of all compact operators in L(X, Y) and $K_n(X, Y)$ the set of all operators in L(X, Y) of rank $\leq n$.

The first serous study of the proximinality of $K_n(X, Y)$ in K(X, Y) and L(X, Y) appeared in the paper of Deutsch, Mach, and Saatkamp [2]. This paper was followed by two others, Kamal [4] and Kamal [5], in which several results concerning the proximinality of of $K_n(X, Y)$ in K(X, Y) and L(X, Y) were proved. In their paper [2], Deutsch *et al.* proved that for each integer $n \ge 0$, the set $K_n(c_0, c_0)$ is proximinal in $L(c_0, c_0)$, while in the present paper the following result is proved: Let Q and S be locally com-

* Part of a thesis submitted for the Ph.D. degree at the University of Newcastle Upon Tyne, written under the supervision of Dr. A. L. Brown.

pact Hausdorff spaces, and assume that S contains an infinite convergent sequence of distinct elements. Then, for each $n \ge 1$, $K_n(C_0(Q), C_0(S))$ is proximinal in $K(C_0(Q), C_0(S))$ if and only if Q is finite.

Deutsch *et al.* asked whether or not it is true that the set $K_n(c, c_0)$ is proximinal in $L(c, c_0)$. In this paper the author continues the study of the proximinality of the set $K_n(K, Y)$ in K(X, Y) and L(X, Y).

In Section 1, it is shown that for each positive integer $n \ge 1$, the set $K_n(c, c_0)$ is not proximinal in $L(c, c_0)$, this gives a negative solution to part (a) of Problem 5.2.2 of Deutsch et al. [2]. In Section 2, it is shown that if E = c or c_0 then for each positive integer $n \ge 1$, the set $K_n(E, c)$ is not proximinal in K(E, c). Since by Mach [6], the set $K(c_0, c)$ is proximinal in $L(c_0, c)$, it follows that there are Banach spaces X and Y, such that the set $K_{n}(X, Y)$ is not proximinal in K(X, Y), whereas the set K(X, Y) is proximinal in L(X, Y). The results of Sections 1 and 2 will be used in Section 3 to obtain the main result of this paper which can be stated as follows: if Q and S are two locally compact Hausdorff spaces, such that Scontains an infinite convergent sequence of distinct elements, then for each positive integer $n \ge 1$, the set $K_n(C_0(Q), C_0(S))$ is proximinal in $K(C_0(Q), C_0(S))$ $C_0(S)$) if and only if Q is finite. This result is not generally true if S fails to contain an infinite convergent sequence of distinct elements, Deutsch et al. [2] proved that for any normed linear space X, the set $K_n(X, c_0)$ is proximinal in $K(X, c_0)$. The set that contains an infinite convergent sequence of distinct elements was introduced in Kamal [5] and it was called a set that "Contains Q_0 ." It is shown also in Section 3 that if the locally compact Hausdorff space Q contains Q_0 , then for each positive integer $n \ge 1$, the set $K_n(C_0(Q), c_0)$ is not proximinal in $L(C_0(Q), c_0)$. This might help in finding a general solution to part (b) of Problem 5.2.2 of Deutsch et al. [2]. The rest of the Introduction will be used to cover the basic definitions and notations that will be used later in this paper.

If Q is a Hausdorff topological space, X is a normed linear space and τ is a topology defined on X, then $C(Q, (X, \tau))$ denotes the set of all bounded function from Q to X, which are continuous with respect to τ . If $\tau = \|\cdot\|$ then $C_0(Q, X) = \{f \in C(Q, (X, \|\cdot\|)); \forall \varepsilon > 0 \text{ the set } \{q \in Q; \||f(q)\| \ge \varepsilon\}$ is compact}. If X = R, the set of real numbers, then $C_0(Q, R)$ is denoted by $C_0(Q)$. If Q is the set of all positive integers, then $C_0(Q, X)$ consists of all bounded sequences in X that converges to zero, and will be denoted by $c_0(X)$. If Q is the one point compactification of the set of positive integers, then $C_0(Q, X)$ consists of all bounded convergent sequences in X, and will be denoted by c(X). If X* is the dual of X, then

$$C_0(Q,(X^*,\omega^*)) = \{ f \in C(Q,(X^*,\omega^*)); \hat{x} \circ f \in C_0(Q) \ \forall x \in X \},\$$

where \hat{x} is the image of x under the canonical injection of X in X^{**} .

The proof of the following lemma can be found in Kamal [4].

0.1. LEMMA. Let X be a Banach space, Q a locally compact Hausdorff space, and for each nonnegative integer n, let

 $C_n = \{ f \in C_0(Q, X^*); f(Q) \subseteq N \text{ for some n-dimensional subspace } N \text{ of } X^* \}.$

Then $K_n(X, C_0(Q))$ is proximinal in $L(X, C_0(Q))$ [resp. $K(X, C_0(Q))$] if and only if C_n is proximinal in $C_0(Q, (X^*, \omega^*))$ [resp. $C_0(Q, X^*)$]

0.2. DEFINITION. Let X be a Banach space, Q a locally compact Hausdorff space, and C_n be as in Lemma 0.1.

- (a) For each $f \in C_0(Q, (X^*, \omega^*))$, let $a_n(f)$ denotes $d(f, C_n)$.
- (b) For each $T \in L(X, C_0(Q))$, let $a_n(T)$ denotes $d(T, K_n(X, C_0(Q)))$.

It is obvious from Lemma 0.1 that there is no problem in introducing the same symbol " a_n " in both cases of Definition 0.2, since $a_n(f)$ is attained for each $f \in C_0(Q, (X^*, \omega^*))$ [resp. $C_0(Q, X^*)$] if and only if $a_n(T)$ is attained for each $T \in L(X, C_0(Q))$ [resp. $K(X, C_0(Q))$].

1. $\mathscr{K}_{n}(c, c_{0})$ Is Not Proximinal in $L(c, c_{0})$

In this section it will be shown that for each positive integer $n \ge 1$, the set $K_n(c, c_0)$ is not proximinal in $L(c, c_0)$. By Lemma 0.1 it is enough to show that for each positive integer $n \ge 1$, there is a bounded sequence $\{x_i\}_{i=1}^{\infty}$ in c^* , that converges to zero with respect to the ω^* -topology on c^* , and $a_n(\{x_i\}_{i=1}^{\infty})$ is not attained, that is there is no bounded sequence $\{\tau_i\}_{i=1}^{\infty}$ in any *n*-dimensional subspace of c^* such that $\tau_i \to 0$ and $||\{x_i\}_{i=1}^{\infty} - \{\tau_i\}_{i=1}^{\infty}|| = a_n(\{x_i\}_{i=1}^{\infty})$.

The first step in the proof is to find an *n*-dimensional subspace N_0 of l_1 , and finite subset D of l_1 , such that N_0 is the unique extremal subspace for $d_n(D, l_1)$, that is, $d_n(D, l_1) = \delta(D, N_0)$, and for any *n*-dimensional subspace $N \neq N_0$ in l_1 , $\delta(D, N) > d_n(D, l_1)$. This will be done in Lemma 1.5. The second step is to find a bounded sequence $\{y_i\}_{i=1}^{\infty}$ in l_1 that satisfies certain conditions, and such that $d\{y_i\}_{i=1}^{\infty}$, $C_0(N_0)$ is not attained. This will be done in Lemma 1.6. In Lemma 1.7, the set D and the sequence $\{y_i\}_{i=1}^{\infty}$ will be used together to obtain the required result.

1.1. DEFINITION. The c-topology on l_1 is the topology for which a bounded sequence $\{x^k\}_{k=1}^{\infty}$ in l_1 converges to zero, iff for each $y = (y_1, y_2,...,) \in c$ $\lim_{k \to \infty} [x_1^k \lim y_i + \sum_{i=2}^{\infty} x_i^k y_{i-1}] = 0$, where $x^k = (x_1^k, x_2^k,...,)$. 1.2. PROPOSITION. For each $x = (x_1, x_2,...,) \in l_1$, define the linear functional $\chi \in C^*$ by $\chi(y) = x_1 \lim y_i + \sum_{i=2}^{\infty} x_i y_{i-1}, y = (y_1, y_2,...,) \in c$. Under this identification l_1 is isometric to c^* , and the c-topology on l_1 corresponds to the ω^* -topology on c^* .

1.3. PROPOSITION (Brown [1]). Let B be an (n+1)-dimensional normed linear space and let L be an n-dimensional subspace of B. There is a subset A of B consisting of (n+1) points, such that $d_n(A, B) > 0$ and L is the unique extremal n-dimensional subspace of B for $d_n(A, B)$.

1.4.

Let $\{e'_i\}_{i=1}^{n+1}$ be the standard basis in l_{n+1}^1 , that is $e'_i = (0, 0, ..., 0, 1, 0, ..., 0)$, and let N'_0 be the subspace generated by $\{e'_i\}_{i=1}^n$. By Proposition 1.3, there is a subset A of l_{n+1}^1 consisting of a finite number of elements, such that $d_n(A, l_{n+1}^1) = 2$, and N'_0 is the unique extremal *n*-dimensional subspace for $d_n(A, l_{n+1}^1)$. Let $x_i = 4e'_i + 2e'_{n+1} = (0, ..., 0, 4, 0, ..., 0, 2) \in l_{n+1}^1$, i = 1, 2, ..., n. Then $d(x_i, N'_0) = 2$, and for each $i \ge 1$, the element $y_i = 4e'_i$ is the unique element in N'_0 such that $||x_i - y_i|| = d(x_i, N'_0)$. Let $A' = A \cup \{x_1, ..., x_n\}$, then

- (1) A' consists of a finite number of elements,
- (2) $d_n(A', l_{n+1}^1) = \delta(A', N_0) = 2,$
- (3) N'_0 is the unique extremal subspace for $d_n(A', l^1_{n+1})$, and

(4) for each i = 1, 2, ..., n the element $y_i = 4e'_i$ is the unique element in N'_0 such that $||x_i - y_i|| \le 2$.

1.5. LEMMA. Let $\{e_i\}_{i=1}^{\infty}$ be the standard basis in l_1 , that is $e_i = (0, 0, ..., 0, 1, 0, ...,)$. Let $\gamma_0 = \sum_{i=n+2}^{\infty} a_i e_i$ be an element in l_1 , let i_0 be a positive integer such that, $1 \leq i_0 \leq n$ and let N_0 be the n-dimensional subspace of l_1 generated by

 $\{e_1,...,e_{i_0-1},e_{i_0}+\gamma_0,e_{i_0+1},...,e_n\}.$

There is a subset D of l_1 , consisting of a finite number of elements, such that

- (1) $d_n(D, l_1) = \delta(D, N_0) = 2,$
- (2) N_0 is the unique extremal subspace of l_1 for $d_n(D, l_1)$.

Proof. Let $A', N'_0, \{x_i\}_{i=1}^n$ and $\{e'_i\}_{i=1}^{n+1}$ be as in 1.4. For $x' = \sum_{i=1}^{n+1} \alpha_i e'_i$ in A' one can choose $y' = \sum_{i=1}^n \lambda_i e'_i \in N'_0$, such that $||x' - y'|| \leq 2$. Define $\psi(x') = \sum_{i=1}^{n+1} \alpha_i e_i + \lambda_{i_0} \gamma_0 \in l_1$. Then

$$\left\|\psi(x')-\left(\sum_{i=1}^n\lambda_ie_i+\lambda_{i_0}(e_{i_0}+\gamma_0)\right)\right\|\leq 2.$$

Let $D = \{\psi(x'); x' \in A\}$, then D consists of a finite number of elements and

 $\delta(D, N_0) = 2$. To complete the proof it will be shown that if N is an *n*-dimensional subspace of l_1 and $\delta(D, N) \leq 2$ then $N = N_0$. Let $P: l_1 \to l_{n+1}^1$ be defined by

$$P((x_i)_{i=1}^{\infty}) = (x_i)_{i=1}^{n+1}.$$

Clearly P(D) = A', and since $\delta(D, N) \leq 2$ then $\delta(A', P(N)) \leq 2$. Thus by 1.4 $P(N) = N'_0$, therefore N has a basis of the form

$$d_i = e_i + \sum_{k=n+2}^{\infty} \beta_k^i e_k, \qquad i = 1, 2, ..., n.$$

Also by 1.4 for each $i = 1, 2, ..., n, x_i = 4e'_i + 2e'_{n+1} \in l_{n+1}^1$ is contained in A' and $4e'_i$ is the unique element in N'_0 that approximates x_i , so

$$\psi(x_i) = 4e_i + 2e_{n+1} \quad \text{for } i \neq i_0$$

and

$$\psi(x_{i_0}) = 4e_{i_0} + 4\gamma_0 + 2e_{n+1}.$$

Using the fact that $p(N) = N'_0$, if $z_i \in N$ approximates $\psi(x_i)$, then

$$z_i = 4e_i$$
 for $i \neq i_0$

and

 $z_{i_0} = 4e_{i_0} + 4\gamma_0.$

Therefore $N_0 \subseteq N$, and since dim $N_0 = \dim N = n$, it follows that $N_0 = N$.

1.6. LEMMA. Let $\{e_i\}_{i=1}^{\infty}$ be the standard basis in l_1 . Let

$$\gamma_0 = \sum_{i=n+2}^{\infty} \frac{e_i}{2^{i-n-1}} = (\underbrace{0,0,...,0}_{(n+1)\text{ times}}, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, ...,) \in I_1$$

and let N_0 be the n-dimensional subspace of l_1 generated by

 $\{-e_1+\gamma_0, e_2, e_3, ..., e_n\}.$

There is a bounded sequence $\{y_i\}_{i=1}^{\infty}$ in l_1 with the following properties:

- (1) $\{y_i\}_{i=1}^{\infty}$ converges to zero with respect to the c-topology on l_1 ,
- (2) $d(\{y_i\}_{i=1}^{\infty}, c_0(N_0)) = 2$, and
- (3) $d(\{y_i\}_{i=1}^{\infty}, c_0(N_0))$ is not attained.

Proof. Let $\alpha_0 = -e_1 + \sum_{i=2}^{\infty} e_i/2^{i-1} = (-1, \frac{1}{2}, \frac{1}{4}, ...,) \in l_1$, and let *M* be the one-dimensional subspace generated by α_0 .

160

For each $k \ge 1$ let

$$\psi_k = -e_1 + \sum_{i=k}^{\infty} \frac{e_i}{2^{i-k+1}} = (-1, 0, 0, ..., 0, \frac{1}{2}, \frac{1}{4}, ...,).$$

It will be shown that for $k \ge 3$ the point α_0 is the unique best approximation to ψ_k from *M*. Assume that $d(\psi_k, M) = || \lambda \alpha_0 - \psi ||$, then

$$\begin{split} \|\lambda \alpha_0 - \psi_k\| &= |\lambda - 1| + \sum_{i=2}^{k-1} \frac{|\lambda|}{2^{i-1}} + \sum_{i=k}^{\infty} \left| \frac{\lambda}{2^{i-1}} - \frac{1}{2^{i-k+1}} \right| \\ &= |\lambda - 1| + |\lambda| \left(1 - \frac{1}{2^{k-2}} \right) + \left| \frac{2^{k-2} - \lambda}{2^{k-2}} \right|. \end{split}$$

The only local minimum points for this equation occur when $\lambda = 1$, $\lambda = 0$ and $\lambda = 2^{k-2}$. If $\lambda = 1$ then $\|\lambda \alpha_0 - \psi_k\| = 1 - 2^{-k+2} + 1 - 2^{-k+2} = 2 - 2^{-k+3}$, if $\lambda = 0$ then $\|\lambda \alpha_0 - \psi_k\| = \|\psi_k\| = 2$, and if $\lambda = 2^{k-2}$ then $\|\lambda \alpha_0 - \psi_k\| = 2^{k-2} - 1 + 2^{k-2} - 1 = 2^{k-1} - 2$. So for $k \ge 3$, $\min_{\lambda \in R} \|\lambda \alpha_0 - \psi_k\| = \|\alpha_0 - \psi_k\|$, that is α_0 is the unique best approximation to ψ_k from M. For each positive integer $k \ge 3$, let $a_k = 2/\|\alpha_0 - \psi_k\|$. Since $\|\alpha_0 - \psi\| < 2$ and $\|\alpha_0 - \psi\| \rightarrow 2$, it follows that $a_k > 1$ and $a_k \rightarrow 1$. Let $\phi_k = a_k \psi_k$. Then since $\|\psi_k\| = 2$, it follows that $\|\phi_k\| > 2$, $d(\phi_k, M) = 2$ and $a_k \alpha_0$ is the unique best approximation to ϕ_k from M when $k \ge 3$. Furthermore

(a) Since $\{\psi_k\}_{k=3}^{\infty}$ converges to zero with respect to the *c*-topology on l_1 , it follows that $\{\phi_k\}_{k=3}^{\infty}$ converges to zero with respect to the same topology.

(b) It will be shown that $d(\{\phi_k\}_{k=3}^{\infty}, c_0(M))$ is not attained.

Let $\varepsilon > 0$ be given, and let k_0 be so that for all $k \ge k_0$

 $\|\phi_k\| \leq 2 + \varepsilon.$

Define $\{\tau_k\}_{k=3}^{\infty}$ in M as follows:

$$\tau_k = \begin{cases} a_k \alpha_0 & \text{if } k \leq k_0 \\ 0 & \text{if } k > k_0 \end{cases}$$

Then $\{\tau_k\}_{k=3}^{\infty} \in c_0(M)$ and $\|\{\phi_k\}_{k=3}^{\infty} - \{\tau_k\}_{k=3}^{\infty}\| \leq 2+\epsilon$. Thus $d(\{\phi_k\}_{k=3}^{\infty}, c_0(M)) \leq 2$. But the only sequence $\{\tau_k\}_{k=3}^{\infty}$ in M for which $\|\{\phi_k\}_{k=3}^{\infty} - \{\tau_k\}_{k=3}^{\infty}\| = 2$ is $\{\tau_k\}_{k=3}^{\infty} = \{a_k\alpha_0\}_{k=3}^{\infty}$, and since $a_k \to 1$, it follows that $\tau_k \neq 0$. So $d(\{\phi_k\}_{k=3}^{\infty}, c_0(M))$ is not attained. Define $P: l_1 \to l_1$ by

$$P(x_i) = x_1 e_1 + \sum_{i=2}^{\infty} x_i e_{n+i} = (x_1, 0, 0, ..., 0, x_2, x_3, ...,)$$

Then P is an isometry from l_1 into l_1 and $P(\alpha_0) = -e_1 + \gamma_0$. Let y_1, y_2 be any two elements in N_0 , and for $k \ge 3$, let $y_k = P(\phi_k)$. Then the sequence $\{y_k\}_{k=1}^{\infty}$ converges to zero with respect to the c-topology on l_1 . Furthermore if $k \ge 3$ and $x = c_1(-e_1 + \gamma_0) + \sum_{i=2}^{n} c_i e_i$ in N_0 , then

$$\| y_k - x \| = \sum_{i=2}^n |c_i| + \| y_k - c_1(-e_1 + \gamma_0) \|$$

$$\geq \| y_k - c_1(-e_1 + \gamma_0) \|$$

$$= \| P(\phi_k) - c_1 P(\alpha_0) \|$$

$$= \| \phi_k - c_1 \alpha_0 \|.$$

Therefore for $k \ge 3$, the element $a_k(-e_1 + \gamma_0)$ is the unique best approximation to y_k from N_0 . Thus as in (b) one can show that $d(\{y_k\}_{k=1}^{\infty}, c_0(N_0)) = 2$, and it is not attained.

1.7. LEMMA. For each positive integer $n \ge 1$, there is a bounded sequence $\{x_k\}_{k=1}^{\infty}$ in l_1 , such that $\{x_k\}_{k=1}^{\infty}$ converges to zero with respect to the c-topology on l_1 and $a_n(\{x_k\}_{k=1}^{\infty}$ is not attained.

Proof. Let N_0 and γ_0 be as in Lemma 1.6. By Lemma 1.5 "taking $i_0 = 1$ and replace γ_0 by $-\gamma_0$ " there is a subset D of l_1 consisting of finite number of elements, such that $d_n(D, l_1) = \delta(D, N_0) = 2$, and N_0 is the unique extremal *n*-dimensional subspace for $d_n(D, l_1)$. Without loss of generality let $D = \{z_1, ..., z_m\}$, and let $\{y_k\}_{k=1}^{\infty}$ be as in Lemma 1.6. Define the sequence $\{x_k\}_{k=1}^{\infty}$ in l_1 as follows:

$$x_{k} = \begin{cases} z_{k} & \text{for } k = 1, 1, ..., m \\ y_{k-m} & \text{for } k = m+1, m+2, \end{cases}$$

Then $\{x_k\}_{k=1}^{\infty}$ converges to zero with respect to the *c*-topology on l_1 , and $a_n(\{x_k\}_{k=1}^{\infty}) \leq d(\{x_k\}_{k=1}^{\infty}, c_0(N_0)) = 2$. Assume that there is an *n*-dimensional subspace N of l_1 , and a sequence $\{\tau_k\}_{k=1}^{\infty}$ in N such that $\|\{x_k\}_{k=1}^{\infty} - \{\tau_k\}_{k=1}^{\infty}\| \leq 2$, then $\delta(D, N) \leq 2$ so by lemma 1.5, $N = N_0$, and thus by Lemma 1.6 $\tau_k \neq 0$. So $a_n(\{x_k\}_{k=1}^{\infty})$ is not attained.

1.8. THEOREM. For each positive integer $n \ge 1$ the set $K_n(c, c_0)$ is not proximinal in $L(c, c_0)$.

Proof. Follows from Lemma 0.1, Proposition 1.2, and Lemma 1.7.

Theorem 1.8 gives a negative solution to Problem 5.2.2 in Deutsch, Mach and Saatkamp [2] when X = c.

2. $K_n(E, c)$ Is Not Proximinal in K(E, c) for $E = c_0$ and c

In this section it will be shown that for $E = c_0$ and c and for each positive integer $n \ge 1$, the set $K_n(E, c)$ is not proximinal in K(E, c). The argument of the proof is similar to that one in Section 1 and the main step is Lemma 2.1.

2.1. LEMMA. Let $\{e_i\}_{i=1}^{\infty}$ be the standard basis in l_1 , let

$$\alpha_0 = e_1 + e_3 + \sum_{k=1}^{\infty} \frac{1}{2^k} e_{2k+2} + \sum_{k=1}^{\infty} \frac{1}{2^k} e_{2k+3}$$
$$= (1, 0, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \dots,) \in l_1$$

and let M be the one-dimensional subspace of l_1 generated by α_0 . There is a bounded sequence $\{\beta_i\}_{i=1}^{\infty}$ in l_1 satisfying the following properties:

- (1) $\{\beta_i\}_{i=1}^{\infty}$ converges with respect to the norm-topology on l_1 ,
- (2) $d(\{\beta_i\}_{i=1}^{\infty}, c(M)) = 2$, and
- (3) $d(\{\beta_i\}_{i=1}^{\infty}, c(M))$ is not attained.

Proof.

Let

$$\beta_0 = (1/2e_1) - (1/2e_3) + \sum_{k=1}^{\infty} (1/2^{k+1}) e_{2k+2} - \sum_{k=1}^{\infty} (1/2^{k+1}) e_{2k+3}$$
$$= (\frac{1}{2}, 0, -\frac{1}{2}, \frac{1}{4}, -\frac{1}{4}, \frac{1}{8}, -\frac{1}{8}, ...,) \in l_1$$

and let $\{\psi_i\}_{i=1}^{\infty}$ be the sequence in l_1 , defined as follows:

$$\psi_{2i-1} = \beta_0 + \frac{1}{2^i} e_{2i+3}, i = 1, 2, 3, ...,$$

$$\psi_{2i} = \beta_0 - \frac{1}{2^i} e_{2i+2}, i = 1, 2, 3,$$

Clearly $\psi_i \rightarrow \beta_0$. It will be shown that for each $i \ge 1$ the element $\frac{1}{2}\alpha_0$ is the unique best approximation for ψ_{2i-1} from M, and $-\frac{1}{2}\alpha_0$ is the unique best approximation for ψ_{2i} from M. Let $i \ge 1$ be a fixed positive integer. For any real number λ

$$\|\lambda \alpha_{0} - \psi_{2i-1}\| = \left\| \left[\lambda(e_{1} + e_{3}) + \sum_{k=1}^{\infty} \frac{\lambda}{2^{k}} (e_{2k+2} + e_{2k+3}) \right] \right\|$$

$$-\left[\frac{1}{2}(e_{1}-e_{3})+\sum_{k=1}^{\infty}\frac{1}{2^{k+1}}(e_{2k+2}-e_{2k+3})+\frac{1}{2^{i}}e_{2i+3}\right]\|$$

$$=\left|\lambda-\frac{1}{2}\right|+\left|\lambda+\frac{1}{2}\right|+\left|\lambda-\frac{1}{2}\right|\cdot\left(\sum_{k=1}^{\infty}\frac{1}{2^{k}}\right)+\left|\lambda+\frac{1}{2}\right|$$

$$\cdot\left(\sum_{\substack{k=1\\k\neq i}}^{\infty}\frac{1}{2^{k}}\right)+\left|\frac{\lambda-(1/2)}{2^{i}}\right|$$

$$=\left|\lambda-\frac{1}{2}\right|\left(2+\frac{1}{2^{i}}\right)+\left|\lambda+\frac{1}{2}\right|\left(2-\frac{1}{2^{i}}\right).$$

It follows from this that $\|\lambda \alpha_0 - \psi_{2i-1}\|$ is minimum only when $\lambda = \frac{1}{2}$. In the same way one can show that

$$\|\lambda \alpha_0 - \psi_{2i}\| = |\lambda - \frac{1}{2}| \left(2 - \frac{1}{2^i}\right) + |\lambda + \frac{1}{2}| \left(2 + \frac{1}{2^i}\right),$$

which is minimum only when $\lambda = -\frac{1}{2}$. Thus for each positive integer $i \ge 1$,

$$d(\psi_{2i-1}, M) = \left\| \psi_{2i-1} - \frac{1}{2} \alpha_0 \right\| = 2 - \frac{1}{2^i} < 2,$$
$$d(\psi_{2i}, M) = \left\| \psi_{2i} + \frac{1}{2} \alpha_0 \right\| = 2 - \frac{1}{2^i} < 2,$$

and

$$\|\psi_{2i-1}\| = \|\psi_{2i}\| = 2.$$

For each positive integer $k \ge 1$, let $\lambda_k = 2/d(\psi_k, M)$, then $\lambda_k > 1$ and $\lambda_k \to 1$. Let $\beta_k = \lambda_k \psi_k$, then

(1) Since $\psi_k \to \beta_0$ and $\lambda_k \to 1$, it follows that $\beta_k \to \beta_0$.

(2) It is obvious that $||\beta_k|| \to 2$, and for each positive integer $k \ge 1$, $||\beta_k|| > 2$, so let $\varepsilon > 0$ be given, and let $i_0 \ge 1$ be such that for $i \ge i_0$, $||\beta_i|| \le 2 + \varepsilon$.

Define the sequence $\{\tau_k\}_{k=1}^{\infty}$ in *M* as follows:

$$\tau_k = \begin{cases} \text{the unique best approximination for } \beta_k \text{ from } M, & \text{if } k \leq i_0 \\ 0 & \text{if } k > i_0 \end{cases}$$

Then $\{\tau_k\}_{k=1}^{\infty} \in c(M)$, and $\|\{\beta_k\}_{k=1}^{\infty} - \{\tau_k\}_{k=1}^{\infty}\| \leq 2 + \varepsilon$. Thus

$$d(\{\beta_k\}_{k=1}^{\infty}, c(M)) \leq 2.$$

(3) The only sequence $\{\tau_k\}_{k=1}^{\infty}$ in M satisfies the inequality

 $\|\{\beta_k\}_{k=1}^{\infty}-\{\tau_k\}_{k=1}^{\infty}\|\leqslant 2,$

is the following sequence:

$$\begin{aligned} \tau_{2i-1} &= \frac{1}{2} \lambda_{2i-1} \alpha_0, \qquad i = 1, 2, ..., \\ \tau_{2i} &= -\frac{1}{2} \lambda_{2i} \alpha_0, \qquad i = 1, 2, ..., \end{aligned}$$

which is not in c(M).

2.2. LEMMA. For each positive integer $n \ge 1$, there is a convergent sequence $\{x_i\}_{i=1}^{\infty}$ in l_1 such that $a_n(\{x_i\}_{i=1}^{\infty})$ is not attained.

Proof. Let $\{e_i\}_{i=1}^{\infty}$, α_0 and $\{\beta_i\}_{i=1}^{\infty}$ be as in Lemma 2.1, let

$$\gamma_0 = e_{n+2} + \sum_{k=-1}^{\infty} \frac{1}{2^k} e_{n+2k+1} + \sum_{k=-1}^{\infty} \frac{1}{2^k} e_{n+2k+2}$$
$$= (0, \dots, 0, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \dots,) \in I_1,$$
$$(n+1) \text{ times}$$

and let N_0 be the *n*-dimensional subspace of l_1 generated by $\{e_1, e_2, ..., e_{n-1}, e_n + \gamma_0\}$. Define $T: l_1 \rightarrow l_1$ by

$$T((x_i)_{i=1}^{\infty}) = \sum_{i=1}^{\infty} x_i e_{n+i-1} = (\underbrace{0,...,0}_{(n-1)\text{ times}} x_1, x_2,...,).$$

T is an isometry from l_1 into l_1 , and $T(\alpha_0) = e_n + \gamma_0$. Let $y_i = T(\beta_i) \ i = 1, 2,...$ Then $\{y_i\}_{i=1}^{\infty}$ is a convergent sequence in l_1 , and $d(\{y_i\}_{i=1}^{\infty}, c(N_0)) = 2$. The only sequence $\{\psi_i\}_{i=1}^{\infty}$ in N_0 satisfying $\|\{y_i\}_{i=1}^{\infty} - \{\psi_i\}_{i=1}^{\infty}\|\|=2$ is the image under the isometry *T* of the unique sequence $\{\tau_i\}_{i=1}^{\infty}$ in *M* satisfying $\|\{\beta_i\}_{i=1}^{\infty} - \{\tau_i\}_{i=1}^{\infty}\|\|=2$. But by Lemma 2.1 this sequence does not converge. So $d(\{y_i\}_{i=1}^{\infty}, c(N_0)\})$ is not attained. By Lemma 1.5 "taking $i_0 = n$," there is a subset *D* of l_1 consisting of finite number of elements, such that $d_n(D, l_1) = \delta(D, N_0) = 2$, and N_0 is the unique extremal *n*-dimensional subspace for $d_n(D, l_1)$. Let $D = \{z_1,...,z_m\}$ and define the sequence $\{x_i\}_{i=1}^{\infty}$ in l_1 as follows:

$$x_{i} = \begin{cases} z_{i} & \text{for } i = 1, 2, ..., m \\ y_{i-m} & \text{for } i = m+1, m+2, \end{cases}$$

One can easily show that $\{x_i\}_{i=1}^{\infty}$ is a convergent sequence in l_1 and $a_n(\{x_i\}_{i=1}^{\infty})$ is not attained.

2.3. COROLLARY. If E = c or c_0 then for each positive integer $n \ge 1$ the set $K_n(E, c)$ is not proximinal in K(E, c).

Proof. Follows from Lemmas 0.1 and 2.2.

3. The Proximinality of $K_n(C_0(Q), C_0(S))$ in $K(C_0(Q), C_0(S))$

In this section the proximinality of $K_n(C_0(Q), C_0(S))$ in $K(C_0(Q), C_0(S))$ and in $L(C_0(Q), C_0(S))$ will be studied in detail. It will be shown that if Q and S are locally compact Hausdorff spaces, and S contains Q_0 , then $K_n(C_0(Q), C_0(S))$ is proximinal in $K(C_0(Q), C_0(S))$ iff Q is finite. It will be shown also that if Q is a locally compact Hausdorff space, that contains Q_0 then $K_n(C_0(Q), c_0)$ is not proximinal in $L(C_0(Q), c_0)$. The first step in the proof is to show that if X is a Banach space, and Q is a locally compact Hausdorff space that contains Q_0 , then the proximinality of $K_n(X, c)$ in K(X, c) [resp. L(X, c)] is a necessary condition for the proximinality of $K_{n}(X, C_{0}(Q))$ in $K(X, C_{0}(Q))$ [resp. $L(X, C_{0}(Q))$]. This will be established in Lemma 3.4. The second step is to show that if Q is a locally compact Hausdorff space, Y is a closed subset of Q and X is a Banach space then the proximinality of $K_n(C_0(Y), X)$ in $K(C_0(Y), X)$ [resp. $L(C_0(Y), X)$], is a necessary condition for the proximinality of $K_n(C_0(Q), X)$ in $K(C_0(Q), X)$ [resp. $L(C_0(Q), X)$]. This will be established in Lemma 3.5. Finally the results of Sections 1 and 2 will be used in Theorems 3.6 and 3.8., to obtain the main results.

The closed subspace Y of the Banach space X is called a norm-one-complemented subspace of X if there is a linear projection $P: X \rightarrow Y$ such that ||P|| = 1. The proof of the following proposition depends on this property:

3.1. PROPOSITION. Let Q be a locally compact Hausdorff space, E a Banach space and F a norm-one-complemented subspace of E. If $a_n(f)$ is attained in E for each $f \in C_0(Q, E)$, then $a_n(g)$ is attained in F for each $g \in C_0(Q, F)$.

The proof of the following lemma is straight forward:

3.2. LEMMA. Let Q be a locally compact Hausdorff space and let $X = C_0(Q)$. If Q is infinite then there is a subspace Y of X* satisfying the following properties:

- (1) Y is isometrically isomorphic to l_1 .
- (2) Y is a norm-one-complemented subspace of X^* .

Lemma 3.3 is similar to the Extension of Tietze's Theorem due to Dugundji [3].

3.3. LEMMA. Let X be a Banach space, Q a locally compact Hausdorff space that contains Q_0 and let $\{b_i\}_{i=1}^{\infty}$ be an infinite sequence of distinct elements in Q, that converges to b_0 in Q. There is a sequence $\{\phi_i\}_{i=0}^{\infty}$ of real-valued functions on Q with the following properties:

- (a) For $i = 1, 2, 3, ..., the function \phi_i$ is continuous.
- (b) $0 \le \phi_i(q) \le 1$, for all $q \in Q$ and i = 0, 1, 2,...
- (c) $\phi_i(b_i) = \delta_{ii}$ for i = 1, 2, 3, ..., and j = 1, 2, 3, ...
- (d) $\phi_0(b_i) = 0$ for $i = 1, 2, 3, \dots$
- (e) $\sum_{i=0}^{\infty} \phi_i(q) \leq 1$ for all $q \in Q$.
- (f) There is a compact subset Y of Q, such that $\sum_{i=0}^{\infty} \phi_i \equiv 0$ outside Y.

(g) If $\{x_i\}_{i=1}^{\infty}$ is a bounded sequence in X that converges to x_0 , then the function $f: Q \to X$ defined by $f(q) = \sum_{i=0}^{\infty} \phi_i(q) x_i$, is an element in $C_0(Q, X)$.

(h) If X is a dual space and $\{x_i\}_{i=1}^{\infty}$ is a bounded sequence in X, that is, ω^* -convergent to x_0 then the function $f: Q \to X$ defined by $f(q) = \sum_{i=0}^{\infty} \phi_i(q) x_i$, is an element in $C_0(Q, (X, \omega^*))$.

Proof. Since $b_i \to b_0$ one can show that there is a relatively compact open subset U of Q, such that $\{b_i\}_{i=0}^{\infty} \subseteq U$. Let $Y = \overline{U}$, and let $g: Q \to R$ be a continuous function with the following properties:

- (1) g(q) = 0 for $q \notin U$, and ||g|| = 1,
- (2) $g(b_i) = 1$ for $i = 1, 2, ..., and g(q) \ge 0$ for all $q \in Q$.

Let $\{V_1, U_1\}$ be an open cover for Q that satisfies the properties that $V_1 \cap \{b_i\}_{i=0}^{\infty} = \{b_1\}$, and $b_1 \notin U_1$. Let $\{\phi'_1, g'_1\}$ be a partition of unity corresponding to $\{V_1, U_1\}$. Then $\phi'_1(b_1) = 1$, $\phi_1(b_i) = 0$ for $i \neq 1$, $g'_1(b_1) = 0$, and $g'_1(b_i) = 1$ for $i \neq 1$. Let $\phi_1 = \phi'_1 \cdot g$ and let $g_1 = g'_1 \cdot g$, then $\phi_1 + g_1 = g$. By the same method, for each $n \ge 1$, "by taking g_{n-1} in place of g," one can show that there are two nonnegative continuous functions ϕ_n and g_n with the properties that $\phi_n(b_n) = 1$, $\phi_n(b_i) = 0$ for $i \neq n$ and $\phi_n + g_n = g_{n-1}$, that is, $\sum_{i=1}^n \phi_i + g_n = g$. Since $\{\phi_i\}_{i=1}^n$ and g_n are nonnegative, it follows that for each $q \in Q$, $\sum_{i=1}^n \phi_i(q) \le g(q)$. Thus by induction there are two bounded sequences $\{\phi_i\}_{i=1}^\infty$ and $\{g\}_{i=1}^\infty$ of nonnegative continuous functions on Q, satisfying that $\phi_i(b_j) = \delta_{ij}$, $0 \le \phi_i(q) \le 1$ for each $q \in Q$, $\phi_i \equiv 0$ outside Y, and $\sum_{i=1}^n \phi_i + g_n = g$. Clearly $\sum_{i\leq 1}^\infty \phi_i(q) \le g(q)$ for each $q \in Q$, so let $\phi_0 = g - \sum_{i=1}^\infty \phi_i$. Then $0 \le \phi_0(q) \le 1$ for each $q \in Q$, $\phi_0 \equiv 0$ outside Y, and $\phi_0(b_i) = 0$ for i = 1, 2,... Thus the conditions (a) (f) are satisfied.

(g) Assume that $x_i \rightarrow x_0$ in X, and let $f: Q \rightarrow X$ be defined by

$$f(q) = \phi_0(q) x_0 + \sum_{i=1}^{\infty} \phi_i(q) x_i \quad \text{for } q \in Q.$$

Then

$$f(q) = \left[\phi_0(q) + \sum_{i=1}^{\infty} \phi_i(q)\right] \cdot x_0 + \sum_{i=1}^{\infty} \phi_i(q) \cdot [x_i - x_0]$$

= $g(q) x_0 + \sum_{i=1}^{\infty} \phi_i(q) \cdot [x_i - x_0].$

Since for each $i \ge 1$ the function ϕ_i is continuous, and since $||x_i - x_0|| \to 0$, it follows that the function $\sum_{i=1}^{\infty} \phi_i(q) \cdot [x_i - x_0]$ is continuous. Thus the function f is continuous, and since $f \equiv 0$ outside y then $f \in C_0(Q, X)$.

The proof of (h) is similar to that of (g).

3.4. LEMMA. Let X be a Banach space, and let Q be a locally compact Hausdorff space that contains Q_0 . If $K_n(X, c)$ is not proximinal in K(X, c) [resp. L(X, c)], then $K_n(X, C_0(Q))$ is not proximinal in $K(X, C_0(Q))$ [resp. $L(X, C_0(Q)]$].

Proof. Assume that $K_n(X, c)$ is not proximinal in K(X, c) [resp. L(X, c)]. Then by Lemma 0.1 there is a convergent [resp. ω^* -convergent] sequence $\{x_i\}_{i=1}^{\infty}$ in X^* such that

$$a_n(\{x_i\}_{i=1}^{\infty}) = \inf\{d(\{x_i\}_{i=1}^{\infty}, c(N)); \dim N \leq n, N \subseteq X^*\}$$

is not attained.

Since Q contains Q_0 , it follows that there is an infinite sequence $\{b_i\}_{i=1}^{\infty}$ of distinct elements in Q, that converges to some point b_0 in Q. As in Lemma 3.3, let $\{\phi_i\}_{i=0}^{\infty}$ be a sequence of nonnegative fuctions defined on Q, corresponding to $\{b_i\}_{i=1}^{\infty}$. Define $f: Q \to X^*$ by $f(q) = \sum_{i=0}^{\infty} \phi_i(q) x_i$. Then by Lemma 3.3, $f \in C_0(Q, X^*)$ [resp. $f \in C_0(Q, X^*, \omega^*)$)], and $f(b_i) = x_i$ for each i = 1, 2,... It will be shown that $a_n(f) = a_n(\{x_i\}_{i=1}^{\infty})$. Let $g: Q \to X^*$ be a continuous function with $g(Q) \subseteq N$ for some *n*-dimensional N of X^* , and let $y_i = g(b_i)$. Since $b_i \to b_0$, then the sequence $\{y_i\}_{i=1}^{\infty}$ converges to $y_0 = g(b_0)$, and

$$\|\{x_i\}_{i=1}^{\infty} - \{y_i\}_{i=1}^{\infty}\| = \sup_i \|f(b_i) - g(b_i)\| \le \|f - g\|.$$

Therefore $a_n(\{x_i\}_{i=1}^{\infty}) \leq a_n(f)$. Second, let $\{y_i\}_{i=1}^{\infty}$ be a convergent sequence in an *n*-dimensional subspace N of X*, and define $g: Q \to N$ by $g(q) = \sum_{i=0}^{\infty} \phi_i(q) y_i$. By Lemma 3.3, $g \in C_0(Q, N)$, and for each $q \in Q$

$$\|(f-g)(q)\| = \left\|\sum_{i=0}^{\infty} \phi_i(q)(x_i - y_i)\right\| \le \sum_{i=0}^{\infty} \phi_i(q) \|x_i - y_i\|$$

$$\le \sup_i \|x_i - y_i\| = \|\{x_i\}_{i=1}^{\infty} - \{y_i\}_{i=1}^{\infty}\|.$$

Thus $||f-g|| \le ||\{x_i\}_{i=1}^{\infty} - \{y_i\}_{i=1}^{\infty}||$, therefore $a_n(f) \le a_n(\{x_i\}_{i=1}^{\infty})$. It is clear from the first part of the proof, that if $a_n(f)$ is attained then

 $a_n(\{x_i\}_{i=1}^{\infty})$ is attained. But $a_n(\{x_i\}_{i=1}^{\infty})$ is not attained, so $a_n(f)$ is not attained.

3.5. LEMMA. Let Q be a locally compact Hausdorff space, Y a closed subset of Q and let X be a Banach space. If $K_n(C_0(Y), X)$ is not proximinal in $K(C_0(Y), X)$ [resp. $L(C_0(Y), X)$] then $K_n(C_0(Q), X)$ is not proximinal in $K(C_0(Q), X)$ [resp. $L(C_0(Q), X)$].

Proof. Let $P: C_0(Q) \to C_0(Y)$ be defined by

$$P(f) = f_{|Y}, f \in C_0(Q).$$

P is a linear and onto mapping with $||P(f)|| \leq ||f||$ for each $f \in C_0(Q)$. Let *T* be an operator in $K(C_0(Y), X)$ [resp. $L(C_0(Y), X)$], then $T' = T \circ P$ is an operator in $K(C_0(Q), X)$ [resp. $L(C_0(Q), X)$]. It will be shown that $a_n(T) = a_n(T')$, and if $a_n(T)$ is not attained then $a_n(T')$ is not attained. If $K: C_0(Y) \to X$ is a bounded linear operator of rank less than or equal to *n*, then $K' = K \circ P$ is an operator in $K_n(C_0(Q), X)$. Furthermore

$$||T'-K'|| \leq ||P|| ||T-K|| = ||T-K||.$$

Thus $a_n(T') \leq a_n(T)$.

Second, let $K' \in K_n(C_0(Q), X)$, then there are $\{\mu_k\}_{k=1}^n$ in $(C_0(Q))^*$, and $\{x_k\}_{k=1}^n$ in X, such that for each $f \in C_0(Q)$

$$K'(f) = \sum_{k=1}^n \mu_k(f) \cdot x_k.$$

For each k = 1, 2, ..., n, let $\mu'_k = \mu_{k|Y}$, and let $K: C_0(Y) \to X$ be defined by

$$K(f) = \sum_{k=1}^{n} \mu'_{k}(f) \cdot x_{k}, \qquad f \in C_{0}(Y).$$

Clearly $K \in K_n(C_0(Y), X)$. It will be shown that for each $f \in C_0(Y)$ with $||f|| \leq 1$, there is a net $\{f_\alpha\}_{\alpha \in I}$ in the unit ball of $C_0(Q)$ such that

$$\|(T-K)(f)\| \in \overline{\{\|(T'-K')(f_{\alpha})\|\}_{\alpha \in I}},$$

If this is true then $||T - K|| \leq ||T' - K'||$, and therefore $a_n(T) = a_n(T')$. Let $\{U_{\alpha}\}_{\alpha \in I}$ be the family of all open sets in Q that contain Y. For each $\alpha \in I$, there is a continuous function $g_{\alpha}: Q \to R$ with the following properties:

$$g_{\alpha}(q) = \begin{cases} 1 & \text{for } q \in Y, \\ 0 & \text{for } q \notin U_{\alpha}, \end{cases}$$

and

$$0 \leq g_{\alpha}(q) \leq 1$$
 for all $q \in Q$.

On the other hand by Tietze's Extension Theorem, there is a function $F \in C_0(Q)$, such that $||F|| \leq ||f||$ and $F_{1Y} = f$. Let $f_{\alpha} = F \cdot g_{\alpha}$. Then the net $\{f_{\alpha}\}_{\alpha \in I}$ is contained in the unit ball of $C_0(Q)$. Furthermore for each $\alpha \in I$, $T'(f_{\alpha}) = T(f)$, and since Q is a Hausdorff space, it follows that $\bigcap_{\alpha \in I} \bigcup_{\alpha} = Y$, thus for each $k = 1, 2, ..., n, \mu'_k(f) \in \overline{\{\mu_k(f_{\alpha})\}_{\alpha \in I}}$. Hence

$$\|(T-K)(f)\| \in \overline{\{\|(T'-K')(f_{\alpha})\|\}_{\alpha \in I}}.$$

It is clear from the proof that if $a_n(T')$ is attained then $a_n(T)$ is attained.

3.6. THEOREM. If Q is a locally compact Hausdorff space, that contains Q_0 then for each positive integer $n \ge 1$, the set $K_n(C_0(Q), c_0)$ is not proximinal in $L(C_0(Q), c_0)$.

Proof. By Theorem 1.8, the set $K_n(c, c_0)$ is not proximinal in $L(c, c_0)$. Since Q contains Q_0 , it contains an infinite convergent sequence $\{b_i\}_{i=1}^{\infty}$ of distinct elements, but then $c = C(\overline{\{b_i\}_{i=1}^{\infty}})$. So by Lemma 3.5, the set $K_n(C_0(Q), c_0)$ is not proximinal in $L(C_0(Q), c_0)$.

Note. Theorem 3.6 is not generally true if Q fails to contain Q_0 , indeed by Deutsch *et al.* [2], the set $K_n(c_0, c_0)$ is proximinal in $L(c_0, c_0)$.

3.7. LEMMA. Let Q be a locally compact Hausdorff space. If Q is infinite then for each positive integer $n \ge 1$, the set $K_n(C_0(Q), c)$ is not proximinal in $K(C_0(Q), c)$.

Proof. By Corollary 2.3, the set $K_n(c, c)$ is not proximinal in K(c, c). Thus by Lemma 0.1, there is a convergent sequence $\{x_i\}_{i=1}^{\infty}$ in l_1 , such that $a_n(\{x_i\}_{i=1}^{\infty})$ is not attained. By Lemma 3.2, l_1 is isometric to a norm-onecomplemented subspace of $(C_0(Q))^*$, thus by Proposition 3.1, there is a convergent sequence $\{y_i\}_{i=1}^{\infty}$ in $(C_0(Q))^*$ such that $a_n(\{y_i\}_{i=1}^{\infty})$ is not attained. Therefore by Lemma 0.1, the set $K_n(C_0(Q), c)$ is not proximinal in $K(C_0(Q), c)$.

3.8. THEOREM. Let Q and S be two locally compact Hausdorff spaces, and assume that S contains Q_0 . Then for any positive integer $n \ge 1$, the set $K_n(C_0(Q), C_0(S))$ is proximinal in $K(C_0(Q), C_0(S))$ iff Q is finite.

Proof. Assume that Q is infinite. By Lemma 3.7, the set $K_n(C_0(Q), c)$ is not proximinal in $K(C_0(Q), c)$, thus by Lemma 3.4, the set $K_n(C_0(Q), C_0(S))$ is not proximinal in $K(C_0(Q), C_0(S))$.

Second, assume that Q is finite. Then there is a positive integer $m \ge 1$, such that $C_0(Q) = l_m^\infty$. By Brown [1] the metric projection from $(l_m^\infty)^* = l_m^1$ onto any of its subspaces has a continuous selection. Thus by Deutsch *et al.* [2] the set $K_n(C_0(Q), C_0(S))$ is proximinal in $K(C_0(Q), C_0(S))$. *Note.* Theorem 3.8 is not generally true if S fails to contain Q_0 . By Deutsch *et al.* [2], the set $K_n(X, c_0)$ is proximinal in $K(X, c_0)$ for any normed linear space X, and the set $K_n(X, l_{\infty})$ is proximinal in $L(X, l_{\infty})$ for any normed linear space X.

ACKNOWLEDGMENT

The author wishes to thank his supervisor, Dr. A. L. Brown for his continuous support and valuable supervision during the course of this research.

REFERENCES

- 1. A. L. BROWN, Best n-dimensional approximation to sets of functions, Proc. London Math. Soc. 14 (1964), 577-594.
- 2. F. DEUTSCH, J. MACH, AND K. SAATKAMP, Approximation by finite rank operators, J. Approx. Theory 33 (1981), 199 213.
- 3. J. DUGUNDJI, An extension of Tietze's Theorem, Proc. J. Math. 1 (1951), 353-367.
- 4. A. KAMAL, On proximinality and sets of operators. I. Best approximation by finite rank operators, J. Approx. Theory 47 (1986), 132-145.
- 5. A. KAMAL, On proximinality and sets of operators. II. Nonexistence of best approximation from the sets of finite rank operators, J. Approx. Theory 47 (1986), 146-155.
- 6. J. MACH, On the proximinality of compact operators with range in C(S). Proc. Amer. Soc. 72 (1978), 99-104.